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Abstract. Slavnov–Taylor identities have been applied to perform explicitly the renormalization
procedure for the softly broken N = 1 SYM. The result is in accordance with the previous results
obtained at the level of the supergraph technique.

1. Introduction

One of the ways to break supersymmetry is to introduce into the supersymmetric theory
interactions with background superfields that are spacetime independent. The relation between
the theory with softly broken supersymmetry and its rigid counterpart has been studied in [1–6].
The investigation has been performed for singular parts of the effective actions of softly broken
and rigid theories. Since the only modification of the classical action from the rigid case to the
softly broken case is a replacement of coupling constants of the rigid theory with background
superfields, the relation is simple and can be reduced to substitutions of these superfields into
renormalization constants of the rigid theory instead of the rigid-theory couplings [4,5]. Later,
a relation between full correlators of softly broken and unbroken SUSY quantum mechanics
has been found [7]. More recently, nonperturbative results for the terms of the effective action
which correspond to the case when chiral derivatives do not act on background superfields
have been derived [8].

The renormalization of the soft theory has been made on the basis of the supergraph
technique in [5]. Here we perform the renormalization procedure for the softly broken theory
using Slavnov–Taylor identities.

The notation used for the D4 supersymmetry and for the classical action SR (R means
‘rigid’) of the theory without softly broken supersymmetry is given in the appendix. To give
the possibility of comparing with the case of softly broken supersymmetry the renormalization
procedure for the rigid N = 1 SYM is reviewed in the appendix.

2. N = 1 softly broken theories

The classical action SS (the superscript S means ‘soft’) with softly broken supersymmetry
repeats the rigid action SR (A2) except for the replacement couplings of the theory with
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background x-independent superfields,

SS =
∫

d4y d2θS
1

27
TrWαW

α +
∫

d4ȳ d2θ̄ S̄
1

27
Tr W̄ α̇W̄α̇

+
∫

d4x d2θ d2θ̄ �̄i(eV )i
j
Kj

k�k +
∫

d4y d2θ [ỹijk�i�j�k + M̃ij�i�j ]

+
∫

d4ȳ d2θ̄ [ ¯̃yijk�̄i�̄j �̄k + M̃ij �̄
i�̄j ]. (1)

The indices of the matter superfields are reducible. They run over irreducible representations
and members of them. The external background x-independent superfields S, Kj

i and ỹijk are

S = 1

g2
(1− 2mAθ

2) S̄ = 1

g2
(1− 2m̄Aθ̄

2)

Ki
j = δ

j

i + (m2)
j

i θ
2θ̄2

ỹijk = yijk + Aijkθ
2 ¯̃yijk = ȳijk + Āijkθ̄

2

M̃ij = Mij + Bij θ
2 M̃ij = M̄ij + B̄ij θ̄

2.

These superfields break supersymmetry in a soft way since they are not included in the
supersymmetry transformation at the component level.

3. Slavnov–Taylor identities

In the rest of the paper we concentrate on the gauge part of the action. The renormalization of
the chiral matter superfields is trivial and is evident from the supergraph technique [1, 5].

To fix the gauge we have to add the gauge fixing term and the ghost terms to the action (1),
which we choose in a slightly different manner in comparison with the rigid case (A3),∫

d4x d2θ d2θ̄
1

16
Tr

(
D̄2 V√

α̃

)(
D2 V√

α̃

)

+
∫

d4y d2θ
i

2
Tr bD̄2

(
δc̄,cV√

α̃

)
+
∫

d4ȳ d2θ̄
i

2
Tr b̄D2

(
δc̄,cV√

α̃

)

where b and b̄ are antighost chiral and antichiral superfields, and c and c̄ are ghost chiral and
antichiral superfields, respectively. Throughout this paper we consider the non-zero highest
components of the couplings as an insertion into the rigid theory supergraphs. Such a choice
of the gauge fixing term and the ghost terms means that we fix the gauge arbitrariness by
imposing the condition

D2V (x, θ, θ̄)√
α̃

= f̄ (ȳ, θ̄ ) D̄2V (x, θ, θ̄)√
α̃

= f (y, θ) (2)

where f and f̄ are arbitrary chiral and antichiral functions. This allows us to consider the
gauge fixing constant α̃ as an external x-independent background superfield on the same foot
with the soft couplings and the soft masses of the softly broken action (1). This modification
of the gauge fixing condition is important even at the level of supergraph technique [5]. As
it will be clear below this modification is the necessary way to remove divergences from the
effective action of the softly broken theory using Slavnov–Taylor identities.

Hence, the total gauge part of the classical action (1) is

SS
gauge =

∫
d4y d2θS

1

27
TrWαW

α +
∫

d4ȳ d2θ̄ S̄
1

27
Tr W̄ α̇W̄α̇
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+
∫

d4x d2θ d2θ̄
1

16
Tr

(
D̄2 V√

α̃

)(
D2 V√

α̃

)

+
∫

d4y d2θ
i

2
Tr bD̄2

(
δc̄,cV√

α̃

)
+
∫

d4ȳ d2θ̄
i

2
Tr b̄ D2

(
δc̄,cV√

α̃

)
. (3)

The action (3) is invariant under the same BRST symmetry as the rigid gauge action (3)
except for the transformation of the antighost superfields, which is a little different from what
we have in the rigid case (A7):

eV → eic̄εeV eicε δb = 1

32

(
D̄2D2 V√

α̃

)
ε

c→ c + ic2ε δb̄ = 1

32

(
D2D̄2 V√

α̃

)
ε

c̄→ c̄ − ic̄2ε

(4)

with a Hermitian–Grassmannian parameter ε, ε† = ε.
The path integral describing the quantum soft theory is defined in the same way as the

path integral (A8) of the rigid theory,

Z[J, η, η̄, ρ, ρ̄,K,L, L̄] =
∫

dV dc dc̄ db db̄ exp i[SS
gauge

+2 Tr(JV + iηc + iη̄c̄ + iρb + iρ̄b̄) + 2 Tr(iKδc̄,cV + Lc2 + L̄c̄2)]. (5)

The third term in the brackets is the BRST invariant since the external superfields K and L are
BRST invariant by definition. All fields in the path integral are in the adjoint representation of
the gauge group. For the sake of brevity we omit the symbol of integration in the terms with
external sources, keeping in mind that it is the full superspace measure for vector superfields
and the chiral measure for chiral superfields.

The ghost equation that is a reflection of invariance of the path integral (5) under the
change of variables

b→ b + ε b̄→ b̄ + ε̄

with an arbitrary chiral superfield ε must be modified in comparison with the ghost equation of
the rigid theory (A9) taking into account the modified BRST transformation of the antighost
field (4). As the result, two ghost equations can be derived

ρ̄ − i
1

4
D2 1√

α̃

δW

δK
= 0 ρ − i

1

4
D̄2 1√

α̃

δW

δK
= 0.

The Legendre transformation (A11) that has been made in the appendix for the rigid case
can be repeated here without changes. Taking into account the relations (A10) and (A12), the
ghost equations can be represented as

δ"

δb̄
− 1

4
D2 1√

α̃

δ"

δK
= 0

δ"

δb
− 1

4
D̄2 1√

α̃

δ"

δK
= 0. (6)

If the change of fields (4) in the path integral (5) is made we obtain the Slavnov–Taylor
identity as the result of invariance of the integral (5) under a change of variables. There
is complete analogy with the rigid case (A14) except for a little difference caused by the
modified transformation of the antighost superfield in (4). The Slavnov–Taylor identities for
the theory (5) are

Tr

[
δ"

δV

δ"

δK
− i

δ"

δc

δ"

δL
+ i

δ"

δc̄

δ"

δL̄
− δ"

δb

(
1

32
D̄2D2 V√

α̃

)
− δ"

δb̄

(
1

32
D2D̄2 V√

α̃

)]
= 0. (7)
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4. Renormalizations of the softly broken SYM

The identities (6) and (7) allow us to remove all possible divergences from the effective action
" by rescaling superfields and couplings in the classical action (3). Indeed, the identity (6)
restricts the dependence of " on the antighost superfields and on the external source K to an
arbitrary dependence on their combination

(b + b̄)
1√
α̃

+ K.

This means that the corresponding singular part of the effective action is∫
d4x d2θ d2θ̄2i Tr

(
(b + b̄)

1√
α̃

+ K

)
Ã(x, θ, θ̄)

where Ã(x, θ, θ̄) is a combination of c, c̄, V . By index counting arguments we know that
the singular part repeats the structure of the classical action (3) up to coefficients. Hence,
Ã(x, θ, θ̄) starts from the z̃1(c + c̄), since " is Hermitian. Here z̃1 is a constant that can be
found by using the supergraph technique.

Now we can compare the renormalization constants z̃1 and z1. The constant z1 is obtained
from z̃1 by putting all higher components of the soft couplings, of the soft masses, and of
the gauge fixing coupling α̃ in the action (1) equal to zero. In this case z1 is a little different
constant than that is appeared in the appendix, since that rigid theory (A8) has another gauge
fixing condition. Taking into account arguments based on the index of divergence and keeping
in mind the absence of chiral derivatives in the ghost parts of the actions (A6) and (3) we can
see that

z̃1(g̃
2,
√
α̃) = z1(g

2 → g̃2,
√
α→

√
α̃)

g̃2 = g2(1 + mAθ
2 + m̄Aθ̄

2 + 2mAm̄Aθ
2θ̄2) =

(
S + S̄

2

)−1

.
(8)

The substitution g2 → g̃2 becomes obvious if we remember that we consider higher
components of the gauge coupling as insertions into the vector propagator and into the vector
vertices in supergraphs [1, 5]. In short, the arguments of [1, 5] are the following. Since the
action of a chiral derivative on spurions means decreasing the index of divergence inherited
from a rigid diagram, a supergraph with logarithmic divergence becomes convergent in this
case. Hence, for the divergent part all spurions must be taken out of a supergraph together
with rigid couplings.

For the same reason we take out of a supergraph the external superfield
√
α̃. Under the

condition

α̃ = g̃2

we obtain the result obtained in the [5] at the supergraph level for the renormalization constants
that become x-independent vector superfields,

z̃1 = z1(g
2 → g̃2).

In the same way as in the rigid case, the Slavnov–Taylor identity (7) fixes the coefficient
before the longitudinal part of the two-point vector Green function. Indeed, by using projectors
from (A1) the infinite part of the two-point vector correlator can be decomposed as

V (D, z̃a, D̄, z̃b,D, z̃c, D̄, z̃d)V = V (D, z̃a, D̄, z̃b,D, z̃c, D̄, z̃d)
DαD̄2Dα

8 � V

−V (D, z̃a, D̄, z̃b,D, z̃c, D̄, z̃d)
D2D̄2 + D̄2D2

16 � V (9)
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where the four derivatives in parenthesis can stand in some (in general, unknown) way. The
difference from the analogous rigid case decomposition of the two-point vector correlator is
in a possible presence of x-independent background superfields z̃a, z̃b, z̃c, z̃d between these
derivatives.

The identity (7) means that these four derivatives in the second term of this decomposition
must cancel � in the denominator and the longitudinal term is reduced to the form

z̃2
1

32

V√
α̃
(D2D̄2 + D̄2D2)z̃2

V√
α̃
.

It is not difficult to check that the Slavnov–Taylor identity also gives that z̃2 = 1, that is, there
is no infinite correction to the longitudinal part of the two-point vector Green function in the
soft case. The same arguments can be applied even in the case of the total effective action,
taking into account the whole dependence of the effective action " on the combination

(b + b̄)
1√
α̃

+ K.

Hence, there is no finite correction to the longitudinal part of the two-point vector correlator
in the soft case.

Now it is necessary to consider contributions in Ã(x, θ, θ̄) of the next orders in fields. For
example, the third-order terms can be presented as∫

d4x d2θ d2θ̄2i Tr

(
(b + b̄)

1√
α̃

+ K

)
[z̃1(c + c̄) + z̃4(V c + c̄V ) + z̃5(cV + V c̄)]

+
∫

d4y d2θ 2 Tr z̃6Lc
2 +

∫
d4ȳ d2θ̄ 2 Tr ¯̃z6L̄c̄

2. (10)

By the no-renormalization theorem for the superpotential [9] we obtain

z̃6 = ¯̃z6 = 1.

To fix the constants z̃4 and z̃5, we make the change of variables in the effective action "

"[V, c, c̄, b, b̄, K,L, L̄] = "[V (Ṽ ), c, c̄, b, b̄, K(K̃), L, L̄] = "̃[Ṽ , c, c̄, b, b̄, K̃, L, L̄]

V = Ṽ z̃1 K = K̃

z̃1
.

(11)

The Slavnov–Taylor identity (7) in the new variables is

Tr

[
δ"̃

δṼ

δ"̃

δK̃
− i

δ"̃

δc

δ"̃

δL
+ i

δ"̃

δc̄

δ"̃

δL̄
− δ"̃

δb

(
1

32
D̄2D2 Ṽ z̃1√

α̃

)
− δ"̃

δb̄

(
1

32
D2D̄2 Ṽ z̃1√

α̃

)]
= 0.

(12)

The part of the effective action (10) in the new variables looks like∫
d4x d2θ d2θ̄ 2i Tr

(
(b + b̄)

z̃1√
α̃

+ K̃

)
[(c + c̄) + z̃′4(Ṽ c + c̄Ṽ ) + z̃′5(cṼ + Ṽ c̄)]

+
∫

d4y d2θ 2 TrLc2 +
∫

d4ȳ d2θ̄ 2 Tr L̄c̄2 (13)

where z̃′4 and z̃′5 are new constants.
The higher-order terms in the brackets of (13) are restored unambiguously by themselves

in the iterative way due to the first three terms in the modified identities (12). As the result,
we have ∫

d4x d2θ d2θ̄ 2i Tr

(
(b + b̄)

z̃1√
α̃

+ K̃

)
[δc̄,cṼ ]. (14)
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Now it is necessary to consider the transversal part of the two-point vector correlator.
Having made the change of variables in the effective action (11), we see that the only structures
of derivatives in the two-point vector Green function∫

d4x d2θ d2θ̄ z̃1Ṽ (D, z̃a, D̄, z̃b,D, z̃c, D̄, z̃d)z̃1Ṽ

which are allowed by the modified identities (12) are∫
d4x d2θ d2θ̄ S

1

25
f (S)(DαṼ )(D̄

2DαṼ ) + H.c.

+
∫

d4x d2θ d2θ̄ Tr
1

32

z̃1Ṽ√
α̃
(D2D̄2 + D̄2D2)

z̃1Ṽ√
α̃
. (15)

Here we have used the dependence of the singular part of "̃ on the external source K̃ which
has already been fixed by (14). The function f must be a chiral superfield.

Since the function f is obtained from the background superfields in the case when chiral
derivatives do not act on them, it can be obtained as the result of the change of rigid theory
couplings with background superfields. But we have only one chiral background superfield
which is the soft gauge coupling S. Hence, f (S) can be obtained from the corresponding
coefficient of the rigid theory by the change

1

g2
→ S.

In the limit of constant gauge coupling we have∫
d4y d2θ

1

g2

1

27
z2

1 z3(D̄
2DαṼ )(D̄

2DαṼ ) + H.c.

where z1 and z3 are renormalization constants of the rigid theory. Hence, we can derive that

f (S)|θ2=0 = z3 z
2
1 = zg2 f (S) ≡ z̃S(S) = zg2

(
1

g2
→ S

)
. (16)

Hence, the renormalization constants (z̃S, zg2) are not related as in the rule (8) for the pair
(z̃1, z1), but are related in the holomorphic way (16).

The first term in the modified identity (12) will restore in the iterative way higher-order
terms starting from the bilinear transversal two-point correlator (15). Hence, the result of this
restoration is ∫

d4y d2θ S
1

27
z̃S TrWα(Ṽ )W

α(Ṽ ) + H.c.. (17)

Hence, chiral (or antichiral) parts of the vector renormalization couplings are of importance
only if we talk about the renormalization of the soft gauge coupling S. This result is
in accordance with our previous results [5] obtained from the analysis of divergences in
supergraphs.

The following notation is used for brevity in (17):

Wα(V ) ≡ D̄2(e−VDαeV ).

The singular part of the effective action "̃ can be written as a combination of (17) and (14),

"̃sing =
∫

d4y d2θ S
1

27
z̃S TrWα(Ṽ )W

α(Ṽ ) + H.c.

+
∫

d4x d2θ d2θ̄ Tr
1

32

z̃1Ṽ√
α̃
(D2D̄2 + D̄2D2)

z̃1Ṽ√
α̃

+
∫

d4x d2θ d2θ̄ 2i Tr

(
(b + b̄)

z̃1√
α̃

+ K̃

)
[δc̄,cṼ ]. (18)
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Now we should go back to the initial variables V and K , that is, we should make the
change of variables in "̃ opposite to (11). Hence, the singular part of the effective action
which corresponds to the theory with the classical action (3) is

"sing =
∫

d4y d2θ S
1

27
z̃S TrWα

(
V

z̃1

)
Wα

(
V

z̃1

)
+ H.c.

+
∫

d4x d2θ d2θ̄ Tr
1

32

V√
α̃
(D2D̄2 + D̄2D2)

V√
α̃

+
∫

d4x d2θ d2θ̄ 2i Tr

(
(b + b̄)

z̃1√
α̃

+ Kz̃1

)[
δc̄,c

(
V

z̃1

)]
. (19)

Hence, all divergences can be removed from "sing by the following rescaling of fields and
couplings in the path integral (5):

V = VR z̃1 S = SR z̃−1
S

√
α̃ = z̃1

√
α̃R K = KR z̃−1

1 . (20)

5. Conclusions and discussion

In this paper the relations (8) and (16) between the renormalization constants of the softly
broken SYM and their prototypes from the corresponding rigid theory which have been found
in [4] starting from the Hisano–Shifman nonperturbative result [2] and in [5] starting from the
supergraph technique for vector vertices have been derived from the Slavnov–Taylor identities.
It has been shown that the modification (2) of the gauge fixing condition is necessary and
important for the renormalization procedure in the softly broken SYM.

It is clear from the analysis performed here that instead of a spacetime-independent soft
gauge coupling we could consider any chiral superfield without changing the proof given
in this paper. This may be important for the models in which supersymmetry breaking is
communicated to the observable world through interactions with messengers. In these models
S is a messenger superfield which can gain the vacuum expectation value for its highest
component due to interactions with a hidden sector [3,6,13]. This idea with a toy model for a
hidden sector has been considered in [14].

As to the relation between chiral matter renormalization constants of the soft theory
and those of the rigid theory, it has been established in [1] as substitutions of background
superfields into rigid renormalization constants instead of rigid couplings. The result of these
substitutions can be described as in [4,5] through differential operators that act in the coupling
constant space of the rigid theory. The same operators can be used to relate soft and rigid
renormalization group functions [4,5]. Possible applications of the relations between soft and
rigid RG functions to the analysis of phenomenological models can be found in [3, 5, 6, 15].

All the derivations proposed in this paper make sense only if we have fixed a gauge
invariant regularization and defined a renormalization scheme to remove the infinities. In this
work we implied the DRED scheme [16], that is the only practical regulator in order to be able
to calculate higher-order effects in any supersymmetric theory including MSSM. In this case
Slavnov–Taylor identities (12) do not forbid a new gauge invariant term [17] of the effective
action "̃ (18) ∫

d4x d2θ d2θ̄ g(ε)mn Tr "m"n

where g(ε)mn is the metric in the 2ε compactified dimensions and "m is the superfield gauge
connection defined by

"m = 1
2σm

αβ̇D̄β̇ (e
−Ṽ DαeṼ ).



6406 I Kondrashuk

This term generates so-called ε scalar masses in the course of the renormalization procedure.
Indeed, one can see that at the component level the θ2θ̄2 component of z̃1 produces ε scalar
masses [18] when we are replacing Ṽ with V

z̃1
in "̃ to obtain the singular part of the effective

action"sing (19). Even if initially the ε scalar masses are equal to zero, this condition is unstable
under renormalizations and, hence, such a counterterm must be added. As has been found
in [18] the ε scalar mass dependence of the two-loop β functions can be completely removed
by a slight modification of the DRED scheme to the DR′ scheme. The way to generalize this
scheme to all orders of the perturbation theory has been proposed in [6]. However, based on the
explicit presence of this contribution at the two-loop level in the component formalism [18],
it has been stated in [19] that the contribution of the ε scalar mass renormalization should be
taken into account in the physical soft scalar mass β functions. It is possible to determine
this contribution at all orders of the perturbation theory by requiring the existence of a set of
renormalization group invariant relations between soft couplings and masses as has been done
in [19] for the DR′ scheme and further developed in [20, 21] to other schemes.
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Appendix

Our supersymmetric notations are

(ψσmχ̄) ≡ ψασm
αβ̇ χ̄β̇ (ψσmχ̄)

† = (χσmψ̄)

σm
αβ̇ = (I, σi) σ̄ β̇α

m = σm
αβ̇

χα = εαβχβ ε12 = −1

θ2 = −θαθα θ̄2 = −θ̄ α̇ θ̄α̇ ⇒ θ2† = θ̄2

∂αθβ = δαβ ⇒ θ̄β̇
←−̄
∂α̇ = δα̇

β̇∫
d2θ θ2 ≡ 1

4∂
2θ2 = − 1

4∂α∂
αθ2 = −1

∫
d2θ̄ θ̄2 ≡ 1

4

←−̄
∂2 θ̄2 = −←−̄∂α̇←−̄∂α̇ θ̄2 = −1.

The algebra of supersymmetry and covariant derivatives is

εαQ
α + Q̄α̇ε̄α̇ = εα(∂

α + iσm
αβ̇ θ̄β̇∂m) + (

←−̄
∂α̇ − iθβσm

βα̇∂m)ε̄α̇

Qα = ∂α + iσm
αβ̇ θ̄β̇∂m Q̄α̇ =←−̄∂α̇ − iθβσm

βα̇∂m

{Qα, Q̄β̇} = −2iσm
αβ̇∂m {Qα,Qβ} = {Q̄α̇, Q̄β̇} = 0

{Dα, Q̄β̇} = 0

Dα = ∂α − i(σmθ̄)
α∂m D̄α̇ =←−̄∂α̇ + i(θσm)

α̇∂m

{Dα, D̄β̇} = 2iσm
αβ̇∂m {Dα,Dβ} = {D̄α̇, D̄β̇} = 0

(DαD̄2Dα)
† = DαD̄2Dα

DαD̄2Dα

8 � − D2D̄2 + D̄2D2

16 � = 1

� = ηmn∂m∂n = ∂

∂x0

∂

∂x0
− ∂

∂x1

∂

∂x1
− · · ·

ηmn = (1,−1,−1,−1).

(A1)
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The classical rigid action SR of the supersymmetric theory withN = 1 supersymmetry without
soft terms in the superfield formalism is∫

d4y d2θ
1

g2

1

27
TrWαW

α +
∫

d4ȳ d2θ̄
1

g2

1

27
Tr W̄ α̇W̄α̇ +

∫
d4x d2θ d2θ̄ �̄i(eV )i

j
�j

+
∫

d4y d2θ [yijk�i�j�k + Mij�i�j ]+
∫

d4ȳ d2θ̄ [ȳijk�̄
i�̄j �̄k+M̄ij �̄

i�̄j ].

(A2)

Here Wα is the supertensity,

Wα ≡ D̄2(e−VDαeV )

V is a real superfield, V † = V . All fields of the real supermultiplet are in the adjoint
representation of the gauge group

Wα = Wa
α T

a Tr(T aT b) = 1
2δ

ab (T a)† = T a.

To fix the gauge we have to add the gauge fixing term and the ghost terms to the action (A2),
which can be chosen in the standard form [9]∫

d4x d2θ d2θ̄
1

16

1

α
Tr(D̄2V )(D2V )

+
∫

d4y d2θ
i

2
Tr bD̄2δc̄,cV +

∫
d4ȳ d2θ̄

i

2
Tr b̄D2δc̄,cV . (A3)

where b and b̄ are the antighost chiral and antichiral superfields, and c and c̄ are the ghost
chiral and antichiral superfields. Such a choice of the gauge fixing and the ghost terms means
that we fix the gauge arbitrariness by imposing the condition

D2V (x, θ, θ̄) = f̄ (ȳ, θ̄ ) D̄2V (x, θ, θ̄) = f (y, θ)

where f̄ and f are arbitrary antichiral and chiral functions. Under the gauge transformation
the vector superfield V transforms as

eV → e0̄eV e0 (A4)

where 0̄,0 are antichiral and chiral degrees of gauge freedom. We define δ0̄,0V as the
solution to the equation

eV +δ0̄,0V = e0̄eV e0

with infinitesimal fields 0̄,0. This equation can be transformed to the form

eV (δ0̄,0V )− (δ0̄,0V )e
V = [V, 0̄]eV + eV [V,0] (A5)

that can be solved [9] as

δ0̄,0V =
V

2
coth

V

2
∧ (0̄ + 0)− V

2
∧ (0̄−0).

Hence, the total gauge part of the classical action (A2) is

SR
gauge =

∫
d4y d2θ

1

g2

1

27
TrWαW

α +
∫

d4ȳ d2θ̄
1

g2

1

27
Tr W̄ α̇W̄α̇

+
∫

d4x d2θ d2θ̄
1

16

1

α
Tr(D̄2V )(D2V )

+
∫

d4y d2θ
i

2
Tr bD̄2δc̄,cV +

∫
d4ȳ d2θ̄

i

2
Tr b̄D2δc̄,cV . (A6)
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Below we concentrate on the gauge part of the action. A short review of the procedure
necessary to remove divergences from the effective action is given. This review is necessary to
compare with the case of softly broken supersymmetry analysed in the main part of this paper.
This review is very concise and anybody who is interested in more details can refer to the
reviews [10,11]. The BRST symmetry is reviewed in [11] and applications of Slavnov–Taylor
identities to the renormalization of supersymmetric theories can be found in [10].

The action (A6) is invariant under the BRST symmetry,

eV → eic̄εeV eicε δb = 1

32

1

α
(D̄2D2V )ε

c→ c + ic2ε δb̄ = 1

32

1

α
(D2D̄2V )ε

c̄→ c̄ − ic̄2ε

(A7)

with a Hermitian–Grassmannian parameter ε, ε† = ε. This looks like a gauge transformation
for the vector superfield (A4). The transformation of the ghost superfields is caused by the
transformation of δc̄,cV under the BRST transformation of V in (A7). By construction, δc̄,cV
is the solution to the equation (A5) when 0̄,0 are replaced with c̄, c respectively. If in the
equation (A5) we put the transformed vector superfield V + δic̄ε,icεV according to

eV +δic̄ε,icεV = eic̄εeV eicε

instead of V , we obtain that the solution δc̄,cV to equation (A5) takes the transformation
δ(δc̄,cV ) that satisfies the equation

eV (δ(δc̄,cV ))− (δ(δc̄,cV ))e
V = [V, ic̄2ε]eV + eV [V,−ic2ε].

The transformations of the ghost superfields in (A7) compensate this transformation of δc̄,cV ,
so that the total BRST transformation of δc̄,cV is vanishing,

δBRST(δc̄,cV ) = 0.

At the same time, the transformation of antighost superfields b, b̄ is necessary to remove the
non-invariance of the gauge fixing term.

The path integral for the rigid theory is defined as

Z[J, η, η̄, ρ, ρ̄,K,L, L̄] =
∫

dV dc dc̄ db db̄ exp i[SR
gauge

+2 Tr(JV + iηc + iη̄c̄ + iρb + iρ̄b̄) + 2 Tr(iKδc̄,cV + Lc2 + L̄c̄2)]. (A8)

The third term in the brackets is the BRST invariant since the external superfields K and L are
BRST invariant by definition. All fields in the path integral are in the adjoint representation of
the gauge group. For the sake of brevity we omit the symbol of integration in the terms with
external sources, keeping in mind that it is the full superspace measure for vector superfields
and the chiral measure for chiral superfields.

Having made the change of fields in the path integral

b→ b + ε b̄→ b̄ + ε̄

with an arbitrary chiral superfield ε, two identities can be obtained:

ρ̄ − i
1

4
D2 δW

δK
= 0 ρ − i

1

4
D̄2 δW

δK
= 0 (A9)

where the standard definition for the connected diagram generator is used,

Z = e−iW .
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For the derivative with respect to the vector superfield we use the definition

δ

δK
≡ T a δ

δKa

while the derivative with respect to the chiral superfield is defined from the requirement

δ

δη(y, θ)

∫
d4y ′ d2θ ′ 2 Tr η(y ′, θ ′)c(y ′, θ ′) = c(y, θ)⇒ δηa(y ′, θ ′)

δηb(y, θ)
= 1

4 D̄
2δ(8)(z− z′)δab.

Here z is the definition for the total superspace coordinate z = (x, θ, θ̄), so

δ(8)(z− z′) = δ(4)(x − x ′)δ(2)(θ − θ ′)δ(2)(θ̄ − θ̄ ′).

The effective action " is related to W by the Legendre transformation

V ≡ −δW
δJ

ic ≡ −δW
δη

ic̄ ≡ −δW
δη̄

ib ≡ −δW
δρ

ib̄ ≡ −δW
δρ̄

(A10)

" = −W − 2 Tr(JV + iηc + iη̄c̄ + iρb + iρ̄b̄) ≡ −W − 2 Tr(Xφ)
(Xφ) ≡ iG(k)Xkφk

X ≡ (J, η, η̄, ρ, ρ̄) φ ≡ (V , c, c̄, b, b̄)

(A11)

where G(k) = 0 if φk is the Bose superfield and G(k) = 1 if φk is the Fermi superfield.
Iteratively all equations (A10) can be reversed,

X = X[φ,K,L, L̄]

and the effective action is defined in terms of new variables, " = "[φ,K,L, L̄]. Hence, the
following equalities occur:

δ"

δV
= −δX

a

δV

δW

δXa
− iG(a)

δXa

δV
φa − J = −J

δ"

δK
= −δX

a

δK

δW

δXa
− iG(a)

δXa

δK
φa − δW

δK
= −δW

δK
δ"

δc
= iη

δ"

δc̄
= iη̄

δ"

δb
= iρ

δ"

δb̄
= iρ̄

δ"

δL
= −δW

δL

δ"

δL̄
= −δW

δL̄
.

(A12)

Here all Grassmannian derivatives are left derivatives. Therefore, the ghost equations (A9)
can be written as

δ"

δb̄
− 1

4
D2 δ"

δK
= 0

δ"

δb
− 1

4
D̄2 δ"

δK
= 0. (A13)

If the change of fields (A7) in the path integral (A8) is made, that we obtain the Slavnov–Taylor
identity as the result of invariance of the integral (A8) under a change of variables,

Tr

[
J

δ

δK
−iη

(
1

i

δ

δL

)
+ iη̄

(
1

i

δ

δL̄

)
+ iρ

(
1

32

1

α
D̄2D2 δ

δJ

)
+ iρ̄

(
1

32

1

α
D2D̄2 δ

δJ

)]
W = 0

or, taking into account the relations (A12), we have

Tr

[
δ"

δV

δ"

δK
− i

δ"

δc

δ"

δL
+ i

δ"

δc̄

δ"

δL̄
− δ"

δb

(
1

32

1

α
D̄2D2V

)
− δ"

δb̄

(
1

32

1

α
D2D̄2V

)]
= 0.

(A14)

The identities (A13) and (A14) allow us to remove all possible divergences from the effective
action " by rescaling superfields and couplings in the classical action (A6). Indeed, the
identity (A13) restricts the dependence of " on the antighost superfields and on the external
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source K to an arbitrary dependence on their combination b + b̄ + K . This means that the
corresponding singular part of the effective action is∫

d4x d2θ d2θ̄ 2i Tr(b + b̄ + K)A(x, θ, θ̄)

where A(x, θ, θ̄) is a combination of c, c̄, V . By index counting arguments we know that
the singular part repeats the structure of the classical action (A6) up to coefficients. Hence,
A(x, θ, θ̄) starts from the z1(c+ c̄), since" is Hermitian. Here z1 is a constant that can be found
by using the supergraph technique. The Slavnov–Taylor identity (A14) fixes the coefficient
before the longitudinal part of the two-point vector Green function. Indeed, by using projectors
from (A1) the two-point vector correlator can be decomposed into the sum of transversal and
longitudinal parts. The identity (A14) means that there is neither infinite nor finite correction
to the longitudinal part of the two-point vector correlator

1

α

1

32
V (D2D̄2 + D̄2D2)V

even if we have taken into account the whole dependence of the effective action " on the
combination b + b̄ + K .

Now it is necessary to consider contributions to A(x, θ, θ̄) of the next orders in fields. For
example, the third-order terms can be presented as∫

d4x d2θ d2θ̄ 2i Tr(b + b̄ + K)[z1(c + c̄) + z4(V c + c̄V ) + z5(cV + V c̄)]

+
∫

d4y d2θ 2 Tr z6Lc
2 +

∫
d4ȳ d2θ̄ 2 Tr z̄6L̄c̄

2. (A15)

By the no-renormalization theorem for the superpotential [9] we obtain

z6 = z̄6 = 1.

To fix the constants z4 and z5, we make the change of variables in the effective action ",

"[V, c, c̄, b, b̄, K,L, L̄] = "[V (Ṽ ), c, c̄, b, b̄, K(K̃), L, L̄] = "̃[Ṽ , c, c̄, b, b̄, K̃, L, L̄]

V = Ṽ z1 K = K̃

z1
. (A16)

The Slavnov–Taylor identity (A14) in new variables is

Tr

[
δ"̃

δṼ

δ"̃

δK̃
− i

δ"̃

δc

δ"̃

δL
+ i

δ"̃

δc̄

δ"̃

δL̄
− δ"̃

δb

(
1

32

1

α
D̄2D2Ṽ z1

)
− δ"̃

δb̄

(
1

32

1

α
D2D̄2Ṽ z1

)]
= 0.

(A17)

The part of the effective action (A15) in the new variables looks like∫
d4x d2θ d2θ̄ 2i Tr((b + b̄)z1 + K̃)[(c + c̄) + z′4(Ṽ c + c̄Ṽ ) + z′5(cṼ + Ṽ c̄)]

+
∫

d4y d2θ 2 TrLc2 +
∫

d4ȳ d2θ̄ 2 Tr L̄c̄2 (A18)

where z′4 and z′5 are new constants.
The higher-order terms in the brackets of (A18) are restored unambiguously by themselves

in an iterative way due to the first three terms in the modified identities (A17). As the result
we have ∫

d4x d2θ d2θ̄ 2i Tr((b + b̄)z1 + K̃)[δc̄,cṼ ]. (A19)
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Now it is necessary to consider the transversal part of the two-point vector correlator.
Having made the change of variables (A16) in the effective action, we obtain the transversal
part as ∫

d4x d2θ d2θ̄ z3z
2
1

1

g2

1

25
TrDαṼ D̄

2DαṼ + H.c.. (A20)

This is the only gauge invariant combination fixed by the first term in the modified
identities (A17), if we take into account the already fixed dependence (A19) of the singular part
of "̃ on the external source K̃ . Here z3 is a constant that can be found by using the supergraph
technique [12].

The first term in the modified identity (A17) will restore in the iterative way higher-order
terms starting from the bilinear transversal two-point correlator (A20). Hence, the result of
this restoration is∫

d4y d2θ
1

g2

1

27
z3z

2
1 TrWα(Ṽ )W

α(Ṽ ) + H.c.. (A21)

The singular part of the effective action "̃ can be written as a combination of (A21)
and (A19),

"̃sing =
∫

d4y d2θ
1

g2

1

27
z3z

2
1 TrWα(Ṽ )W

α(Ṽ ) + H.c.

+
∫

d4x d2θ d2θ̄ Tr
1

α

1

32
z1Ṽ (D

2D̄2 + D̄2D2)z1Ṽ

+
∫

d4x d2θ d2θ̄ 2i Tr((b + b̄)z1 + K̃)[δc̄,cṼ ].

Now we should go back to the initial variables V and K , that is, we should make the
change of variables in "̃ opposite to (A16). Hence, the singular part of the effective action
which corresponds to the theory with the classical action (A6) is

"sing =
∫

d4y d2θ
1

g2

1

27
z3z

2
1 TrWα

(
V

z1

)
Wα

(
V

z1

)
+ H.c.

+
∫

d4x d2θ d2θ̄ Tr
1

α

1

32
V (D2D̄2 + D̄2D2)V

+
∫

d4x d2θ d2θ̄ 2i Tr((b + b̄)z1 + Kz1)

[
δc̄,c

(
V

z1

)]
. (A22)

Hence, all possible divergences can be removed from "sing by the following rescaling of fields
and couplings in the path integral (A8):

V = VR z1
1

g2
= 1

g2
R

z−2
1 z−1

3 α = z2
1 αR b = bR z−1

1 K = KR z−1
1 .

References

[1] Yamada Y 1994 Phys. Rev. D 50 3537
[2] Hisano J and Shifman M 1997 Phys. Rev. D 56 5475
[3] Giudice G F and Rattazzi R 1998 Nucl. Phys. B 511 25
[4] Jack I and Jones D R T 1997 Phys. Lett. B 415 383
[5] Avdeev L V, Kazakov D I and Kondrashuk I N 1998 Nucl. Phys. B 510 289
[6] Arkani-Hamed N, Giudice G F, Luty M A and Rattazzi R 1998 Phys. Rev. D 58 115005
[7] Kondrashuk I 1999 Phys. Lett. B 470 129
[8] Luty M A and Rattazzi R 1999 J. High Energy Phys. JHEP11(1999)001



6412 I Kondrashuk

[9] West P 1986 Introduction to Supersymmetry and Supergravity (Singapore: World Scientific)
[10] Piguet O 1996 Supersymmetry, supercurrent, and scale invariance Preprint hep-th/9611003
[11] Becchi C 1996 Introduction to BRS symmetry Preprint hep-th/9607181
[12] Grisaru M T, Siegel W and Roc̈ek M 1979 Nucl. Phys. B 159 429
[13] Dine M and Nelson A E 1993 Phys. Rev. D 48 1277

Dine M, Nelson A E and Shirman Yu 1995 Phys. Rev. D 51 1362
Dine M, Nelson A E, Nir Y and Shirman Yu 1996 Phys. Rev. D 53 2658
Giudice G F and Rattazzi R 1999 Phys. Rep. 322 419
(Giudice G F and Rattazzi R 1998 Preprint hep-ph/9801271)

[14] Slavnov A A 1998 Theor. Math. Phys. 117 1364
[15] Kobayashi T, Kubo J and Zoupanos G 1998 Phys. Lett. B 427 291

Kribs G D 1998 Nucl. Phys. B 535 41
Kobayashi T, Kubo J, Mondragon M and Zoupanos G 1999 Nucl. Phys. B 550 99
Huitu K and Kobayashi T 1999 Phys. Lett. B 470 901
Jack I and Jones D R T 1999 Phys. Lett. B 465 148
Kazakov D and Moultaka G 2000 Nucl. Phys. B 577 121
Kazakov D I 2000 Supersymmetry in particle physics: the renormalization group viewpoint Preprint hep-

ph/0001257
[16] Siegel W 1979 Phys. Lett. B 84 193

Capper D M, Jones D R T and van Nieuwenhuizen P 1980 Nucl. Phys. B 167 479
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